

Stochastic Formal Model of PI3K/mTOR Pathway in Alzheimer's Disease: An Evaluation of Rapamycin, LY294002, and NVP-BEZ235

Sérgio Campos, Herbert Fernandes

Alzheimer's disease

- Alzheimer's disease is the most prevalent form of dementia.
- Memory loss is the best-known clinical condition.
 - Disorientation, difficulty communicating, depression, among others.
- The number of patients grows every year.
 - 3 of 5 people in the world will be diagnosed with the disease in 2050.

Alzheimer's disease

Fonte: Breijyeh et al., 2020

Drug Repurposing

- Drug repositioning and combination therapies are alternatives of treatments.
 - Reduced development time and investment (De castro *et al.*, 2018).
 Traditional drug development methods can take 10 to 17 years.
 Repositioning can take between 3 and 12 years.

Biological Systems

- *In silico* techniques can contribute to this process.
 - Evaluation of side effects.
 - ⊖ insights
- Models
 - They are abstractions of key components of a system.
- There are different computational techniques for analyzing models, such as simulation and automatic verification.

Model Checking

Model Checking is an automatic technique for exhaustive system verification.

"Does mTORC1 inhibition imply an increase in autophagy?"

"Does PI3K inhibition imply an increase in Tau phosphorylation?"

Bottleneck

There is no free lunch

In complex systems, state explosion occurs.
 O The number of states grows exponentially.

Statistical Model Checking (SMC)

SMC is a technique for automatic analysis of complex systems that verifies properties in a temporal logic, using controlled simulations.

Temporal Logic - WMTL

• Qualitative

Pr[<=86400*4](<> !controllNFT.produced) >= 0.7

"Hypothesis testing" to make sure a property is satisfied with a certain degree of probability.

Quantitative

Pr[t<=86400*2]([] !controllAbetaPlaque.produced)</pre>

"Estimate" that allows you to identify the probability of a property being satisfied.

Apply SMC technique to verify the potential pharmacological effects in inhibiting the PI3K-Akt-mTOR pathway for the treatment of Alzheimer's disease.

PI3K/mTOR pathway

Related work

Summary of mathematical models used as reference in this work. None of the models integrate the PI3K/mTOR pathway with Alzheimer's Disease nor the stochastic behavior.

Scope	Model	Variables	Model Type
PI3K/mTOR	[29]	IR-IRS1-Akt-TSC-mTORC1-S6K1	ODE
	[30]	IR-PI3K-Akt-mTOR-S6K-GSK3 β	ODE
	[27]	Rapamycin-mTOR	ODE
	[31]	IR-IRS-Akt-mTORC1-mTORC2-DEPTOR	ODE
	[32]	Rapamycin-mTORC1-mTORC2	ODE

$A\beta/Tau pathway$

Related work

Summary of mathematical models used as reference in this work. None of the models integrate the PI3K/mTOR pathway with Alzheimer's Disease nor the stochastic behavior.

Scope	Model	Variables	Model Type
			0.2117 C.0705 C.2

Alzheimer's Disease	[33]	APP-A β -GSK3 β -Tau-NFT	ODE
	[34]	APP-A β -GSK3 β -Tau-NFT-Neuronal Death	PDE

PI3K/mTOR/Aβ/Tau pathway

Related work

Summary of mathematical models used as reference in this work. None of the models integrate the PI3K/mTOR pathway with Alzheimer's Disease nor the stochastic behavior.

Scope	Model	Variables	Model Type
PI3K/mTOR	[29]	IR-IRS1-Akt-TSC-mTORC1-S6K1	ODE
	[30]	IR-PI3K-Akt-mTOR-S6K-GSK3 β	ODE
	[27]	Rapamycin-mTOR	ODE
	[31]	IR-IRS-Akt-mTORC1-mTORC2-DEPTOR	ODE
	[32]	Rapamycin-mTORC1-mTORC2	ODE
Alzheimer's Disease	[33]	APP-A β -GSK3 β -Tau-NFT	ODE
	[34]	APP-A β -GSK3 β -Tau-NFT-Neuronal Death	PDE

PI3K/mTOR/Aβ/Tau pathway

The stochastic formal model

Uppaal - PTAs

Model simulation

Model simulation

Model simulation

Scenarios

- Control;
- 50 e 500 units of the drug;
- 50 units daily during 1 week, and;
- 50 of LY294002 + 50 units of rapamycin.

Ideals results $\begin{cases} \downarrow A\beta \text{ formation} \\ \downarrow \text{ Tau phosphorylation} \end{cases}$

Uppaal - PTAs

t<=100

Properties Verified

1. What is the likelihood in reducing in 5% the Aβ formation over 300 hours?

Pr[<=300] (<> ((drugAdded) && (ABETA < 112*0.95)))

- 2. What is the likelihood of tau phosphorylation reduction over 300 hours? Pr[<=300] (<> aTAU > TAUactivation.maxATAU && drugAdded)
- 3. What is the likelihood of S6K recovering its normal behavior over 300 hours? Pr[<=300] (<> (drugAdded) && (aS6K > S6Kactivation.maxAS6K))

Results - Reducing 5% on AB production

Table 3

Different scenarios were tested with (RAP), LY294002, their combination, and NVP-BEZ235. The interval represents the likelihood of reducing A β production in 5%. In this case, the highest value is better for Alzheimer's treatment. The probability interval is given considering 95% of confidence level.

Scenario	Number of traces	Time (s)	Probability (%)	
			Inf.	Sup.
Control	383	200	55.56	65.54
50 RAP	375	218	58.36	68.35
500 RAP	384	208	58.09	68.09
50 RAP daily 7 days	381	210	55.02	65.02
50 LY294002	390	387	62.08	72.07
500 LY294002	380	433	62.46	72.44
50 LY294002 daily 7 days	380	901	60.35	70.35
50 LY294002 + 50 RAP	363	334	52.84	62.84
50 NVP-BEZ235	371	252	54.32	64.30
500 NVP-BEZ235	386	216	55.28	65.28
50 NVP-BEZ235 daily 7 days	377	305	52.85	62.85

Results - Tau Phosporylation

Table 4

Different scenarios were tested with rapamycin (RAP), LY294002, their combination, and NVP-BEZ235. The interval represents the likelihood of tau phosphorylation increasing. In this case, the lower value is better for Alzheimer's treatment. The probability interval is given considering 95% of confidence level.

Scenario	Number of traces	Time (s)	Probability (%)	
			Inf.	Sup.
Control	245	195	9.94	19.94
50 RAP	217	205	7.12	17.09
500 RAP	179	153	5.19	15.16
50 RAP daily 7 days	217	182	7.73	17.72
50 LY294002	291	516	17.09	27.08
500 LY294002	338	723	27.55	37.53
50 LY294002 daily 7 days	386	1408	48.98	58.96
50 LY294002 + 50 RAP	324	583	18.74	28.73
50 NVP-BEZ235	326	356	18.92	19.95
500 NVP-BEZ235	124	94	85.89	95.86
50 NVP-BEZ235 daily 7 days	79	78	90.19	100

Discussion

Table 6

Summary of the response of drug administration on each variable. The ideal scenario is a strategy capable of reducing A β production and tau phosphorylation. None of the scenarios tested in our model achieved such a result.

Scenario	A β formation	tau phosphorylation
Ideal	\downarrow	Ļ
50 RAP	-	Ļ
500 RAP	-	\downarrow
50 RAP daily 7 days	-	\downarrow
50 LY294002	\downarrow	↑
500 LY294002	Ļ	↑
50 LY294002 daily 7 days	\downarrow	1
50 LY294002 + 50 RAP	\downarrow	1
50 NVP-BEZ235	-	↑
500 NVP-BEZ235	-	1
50 NVP-BEZ235 daily 7 days	-	↑

Discussion

- Formal stochastic model of the PI3K/AKT/mTOR pathway and Aβ formation and Tau phosphorylation.
 - The automata can be easily adjusted for new checks.
- It allowed identifying behaviors that were not observed with the simulations and graphic visualization.
- Good response time when checking properties.
 - Personal computer (i3, 8GB de RAM).

Conclusion

- Alzheimer's disease has major challenges to overcome.
- Using SMC, we show the impacts of rapamycin, LY294002, and NVP-BEZ235 on Alzheimer's Disease.
 - High doses do not result in improvement.
 - Inhibition of PI3K may contribute to an increase in Tau phosphorylation.
- The SMC technique proved to be efficient in systems analysis.
- We expect that our approach will assist in the experimental design of pharmacological strategies.

Future work

- Animal experiments to evaluate the impact of BEZ235 on Tau phosphorylation.
- Identify other potential drugs for evaluation.
- Model expansion adding the autophagy process of amyloid plaques.

Statistical Model Checking no reposicionamento de drogas na Doença de Alzheimer

Herbert Rausch Fernandes Doutorado em Bioinformática UFMG Orientador: Prof. Sérgio Campos Co-orientador: Prof. Antônio Carlos de Oliveira

References

Karran, E., Mercken, M., & Strooper, B. De. (2011). The amyloid cascade hypothesis for Alzheimer's disease: An appraisal for the development of therapeutics. Nature Reviews Drug Discovery, 10(9), 698–712. <u>https:--doi.org-10.1038-nrd3505</u>

Christensen, B. D. D. (2007). Alzheimer 's Disease : Progress in the Development of Anti-amyloid Disease-Modifying Therapies. CNS Spectrums, 12(2), 113–123.

Cummings, J., Morstorf, T., & Lee, G. (2016). Alzheimer's drug-development pipeline: 2016. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2(4), 222–232. https:--doi.org-10.1016-j.trci.2016.07.001

33

Cummings, J., Lee, G., Mortsdorf, T., Ritter, A., & Zhong, K. (2017). Alzheimer's disease drug development pipeline: 2017. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 3(3), 367–384. <u>https:--doi.org-10.1016-j.trci.2017.05.002</u>

Cummings, J., Lee, G., Ritter, A., & Zhong, K. (2018). Alzheimer's disease drug development pipeline: 2018. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 4, 195–214. https:--doi.org-10.1016-j.trci.2018.03.009

de Castro, A. A., da Cunha, E. F. F., Pereira, A. F., Soares, F. V., Leal, D. H. S., Kuca, K., & Ramalho, T. C. (2018). Insights into the Drug Repositioning Applied to the Alzheimer's Disease Treatment and Future Perspectives. Current Alzheimer Research, 15(12), 1161–1178.

https:--doi.org-10.2174-1567205015666180813150703

DE STROOPER, B.; VASSAR, R.; GOLDE, T. The secretases: enzymes with therapeutic potential in Alzheimer disease. Nature Reviews Neurology, v. 6, n. 2, p. 99-107, Feb. 2010. Disponível em: https://doi.org/10.1038/nrneurol.2009.218. Acesso em: 10 nov. 2019.

DORVASH, M. et al. Dynamic modeling of signal transduction by mTOR complexes in cancer. Journal of Theoretical Biology, n. 483, 21st Dec. 2019. Disponível em: https://doi.org/10.1016/j.jtbi.2019.109992. Acesso em: 10 nov. 2019.

KUBOTA, H. et al. Temporal coding of insulin action through multiplexing of the AKT pathway. Molecular Cell, v. 46, n. 6, p. 820-832, 2012. Disponível em: https://doi.org/10.1016/j.molcel.2012.04.018. Acesso em: 10 nov. 2019. Gabbouj, S., Ryhänen, S., Marttinen, M., Wittrahm, R., Takalo, M., Kemppainen, S., Natunen, T. (2019). Altered Insulin Signaling in Alzheimer's Disease Brain – Special Emphasis on PI3K-Akt Pathway. Frontiers in Neuroscience, 13(June), 1–8. Https:--doi.org-10.3389-fnins.2019.00629

GOLTSOV, A. et al. Kinetic modelling of in vitro data of PI3K, mTOR1, PTEN enzymes and on-target inhibitors Rapamycin, BEZ235, and LY294002. European Journal of Pharmaceutical Sciences, v. 97, p. 170-181, 2017. Disponível em: http://dx.doi.org/10.1016/j.ejps.2016.11.008. Acesso em: 13 nov. 2019.

PEZZE, P. D et al. A dynamic network model of mTOR signaling reveals TSCindependent mTORC2 regulation. Science Signaling, v. 5, n. 217, p. 1-18, 2012. Disponível em: https://doi.org/10.1126/scisignal.2002469. Acesso em: 10 nov. 2019. PROCTOR, C. J.; GRAY, D. A. GSK3 and p53: Is there a link in Alzheimer's disease? Molecular Neurodegeneration, v. 5, n. 1, p. 1-15, 2010. Disponível em: https://doi.org/10.1186/1750-1326-5-7. Acesso em: 10 nov. 2019.

VARUSAI, T. M.; NGUYEN, L. K. Dynamic modelling of the mTOR signalling network reveals complex emergent behaviours conferred by DEPTOR. Scientific Reports, v. 8, n. 1, p. 1-14, 2018. Disponível em: http://dx.doi.org/10.1038/s41598-017-18400-z. Acesso em: 10 nov. 2019.

Statistical Model Checking no reposicionamento de drogas na Doença de Alzheimer

Herbert Rausch Fernandes Doutorado em Bioinformática UFMG Orientador: Prof. Sérgio Campos Co-orientador: Prof. Antônio Carlos de Oliveira

