NeuroCodeBench: a plain C neural network benchmark for software verification

Edoardo Manino, Rafael Sá Menezes, Fedor Shmarov, Lucas C. Cordeiro

AFRiTS Workshop at SBMF 2023

5 December 2023

The University of Manchester

The abstraction ladder (1)

The "classic ML" mindset

- Define a neural net as $f : \mathbb{R}^n \to \mathbb{R}^m$
- Gradient descent, auto differentiation
- Data manifold, regularizers, . . .

What's the implicit assumption?

- We live in a mathematician's world
- At a very high level of abstraction
- And operations have infinite precision

Very effective, most of the time

The abstraction ladder (2)

Quantisation efforts

- 16-bit floating point
- 16-bit, 8-bit, 4-bit integers
- Binarized neural networks

Parallel execution

- ► GPU, SIMD instructions, TPU, FPGAs
- Distributed/federated learning

What's the implicit assumption?

- We make a lot of optimisations
- But the result doesn't really change

The abstraction ladder (3)

The software safety mindset

- Buffer overflow, division by zero
- Data race, deadlock, use-after-free
- Infinite loops, side effects

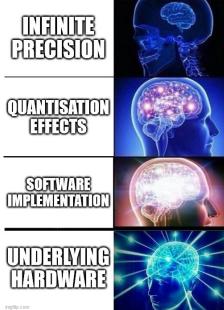
What's the implicit assumption

- Every innocent bug
- Can introduce a vulnerability

Just a problem for library makers?

The abstraction ladder (4)

Don't forget the hardware!



Implementation effects (1)

Can we expect consistent behaviour across devices?

- Cidon et al., Characterizing and taming model instability across edge devices, 2021
- Wang et al, SysNoise: exploring and benchmarking trainin-deployment system inconsistency, 2023

Many low-level sources of noise!

- ▶ Pre-processing: .jpg→tensor (iDCT, interpolation, colour)
- Model inference: convolutions, upsampling, floats, quantize
- ▶ Post-processing: tensor→bounding box (rounding coordinates)

Up to 6% accuracy fluctuation¹

¹Cidon [2021] runs MobileNetV2 on photos taken from five different phones.

Implementation effects (2)

Can we trust NN verifiers?

- VNN-COMP compares the best neural network verifiers
- Let's reproduce one of their results!

Benchmark: reach_prob_density/robot_11

- \blacktriangleright A ReLU network with architecture $5\times 64\times 64\times 64\times 5$
- ▶ Input assumption: $x_0 \in [-1.8, -1.2] \land x_1 \in [-1.8, -1.2]...$
- Output assertion: $y_0 \ge 0.27 \land y_1 \in [-0.17, 0.17]...$

Five tools return a counterexample!

αβ-CROWN, Marabou, nnenum, VeriNet, Peregrinn

But none of them violates the output assertion²

²With the plain C code from onnx2c and the MinGW-w64 compiler.

Software verification

Advantages

- Code is a formal specification
- (just add safety properties)
- Decades of SV research
- Very sophisticated tools

Disadvantages

- Too many implementation details
- Memory model, parallelism
- Hard to scale to large instances

Is it a viable approach?

Develop yet another software verifier

Check the performance of existing ones

NeuroCodeBench (1)

Benchmarking goals

- Representativeness \rightarrow realistic use cases
- Compatibility \rightarrow SV likes plain C code
- ▶ Variety \rightarrow from small to "large" instances
- Correctness \rightarrow known ground truth

Our work is inspired by

Microcontroller software

Short paper available!

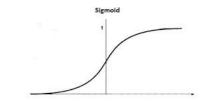
- Manino et al., NeuroCodeBench: a plain C neural network benchmark for software verification, 2023
- https://arxiv.org/abs/2309.03617

NeuroCodeBench (2)

Benchmark Category	Safe	Unsafe	Ground Truth
math_functions	33	11	A Priori
activation_functions	40	16	A Priori
hopfield_nets	47	33	A Priori
poly_approx	48	48	Brute Force
reach_prob_density	22	13	VNN-COMP'22
reinforcement_learning	103	193	VNN-COMP'22
Total	293	314	

Table: Overview of *NeuroCodeBench*. The "Unsafe" column comprises all properties for which a counterexample exists. The "Ground Truth" column reports the source of our verdicts.

Floating-point activations (1)



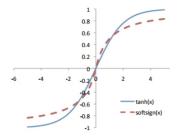
How to implement the sigmoid function?

- s(float x){return 1.0f / (1.0f + expf(-x));}
- s(float x){return 0.5f * tanhf(0.5f * x) + 0.5f;}

Let's compare them:

- Which one is faster?
- Which one is more precise?
- What happens for x > 88.0f?

Floating-point activations (2)



Implementing the softsign function:

s(float x){return x / (1.0f + fabsf(x));}

Tricky questions:

- ▶ What happens for x = -Inf?
- Is our implementation always non-decreasing?

NeuroCodeBench (3)

Functions from math.h

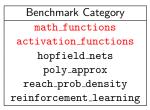
- expf, expm1f, logf, log1pf
- acosf, asinf, atanhf, cosf, sinf, tanhf
- erff, fabsf, fmaxf, sqrtf

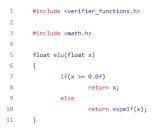
Activation functions

 Elu, Gelu, Logistic, ReLU, Softmax, Softplus, Softsign, TanH

Safety properties (Examples)

- Output bounds: $expf(x) \ge 1 + x$
- Periodicity: $sinf(x) = sinf(x + 2\pi)$
- Symmetry: tanhf(x) = -tanhf(-x)





NeuroCodeBench (4)

Classic Hopfield Networks

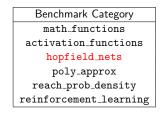
- Recurrent architecture
- Hard-coded Hebbian weights
- Error-correcting behaviour

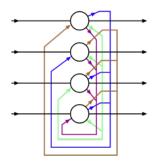
Our idea

- Reconstruct a single $x = (1, 1, \dots, 1)$
- Use either softsign or tanh activations
- Vary code width and num of iterations

Safety properties

- Make $x_i \in [-1, +1]$ for i < half width
- Can the network reach x = (1, ..., 1)?





NeuroCodeBench (5)

Transfer function approximation

- Very common in engineering
- Approximate electrical equivalent

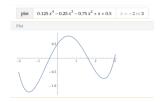
Our idea

- Fourth-order oscillating polynomial
- ▶ ReLUs, 1–4 layers, 16–1024 width

Safety properties

- Robustness of approximation
- $|\mathsf{network}(x) \mathsf{poly}(x)| \le \epsilon$
- for x around the worst-case

Benchmark Category		
math_functions		
activation_functions		
hopfield_nets		
poly_approx		
reach_prob_density		
reinforcement_learning		



NeuroCodeBench (6)

Importing VNN-COMP benchmarks

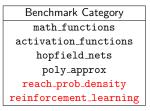
- Choose categories from 2022 edition
- with very small neural networks

Converting to plain C code

- Turn ONNX into plain C with onnx2c
- Microcontroller-style minimalism

Safety properties

- Keep the original VNN-LIB properties
- Encode them as assert/assume
- Check validity of counterexamples



NeuroCodeBench (7)

Benchmark Category	Safe	Unsafe	Ground Truth
math_functions	33	11	A Priori
activation_functions	40	16	A Priori
hopfield_nets	47	33	A Priori
poly_approx	48	48	Brute Force
reach_prob_density	22	13	VNN-COMP'22
reinforcement_learning	103	193	VNN-COMP'22
Total	293	314	

Table: Overview of *NeuroCodeBench*. The "Unsafe" column comprises all properties for which a counterexample exists. The "Ground Truth" column reports the source of our verdicts.

Experimental results (1)

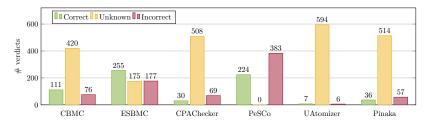
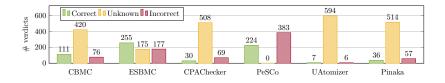


Figure: Results of state-of-the-art software verifiers after 900 seconds.

Experiments with off-the-shelf verifiers

- ▶ We pick the top scoring tools from SV-COMP 2022
- We keep the same settings of the reachability category
- Veriety of techniques: BMC, falsification, portfolios

Experimental results (2)



Reviewer 2 Must Be Stopped!

- ESBMC found 255 true properties, while PeSCo found 224.
- So, who is right? This odd behavior *must* be discussed.

Preliminary Analysis

- ▶ No support of mathematical libraries → incorrect results
- Cannot scale to large programs → unknown result (timeout)
- Other hidden bugs (floats, multi-dimensional arrays)?

Future work

Reproduce

- Submit NeuroCodeBench to SV-COMP 2023
- Experiments run by independent team
- Tool authors have a chance to fix bugs

Improve

- More benchmarks, neural networks, use cases
- Operational models to support math.h

Generalise

- If verifying neural code is too challenging
- Can we reason about sets of implementations?

SV-COMP 2024

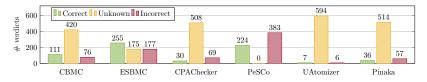


Figure: Results of state-of-the-art software verifiers after 900 seconds.

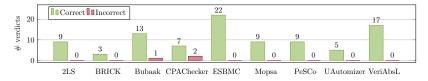
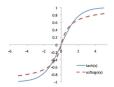


Figure: Results of various SV-COMP pre-runs (numbers may change).

Floating-point activations (3)

```
float softsign(float x)
{ return x / (1.0f + fabsf(x)); }
```



Is our implementation always non-decreasing? No.³

- $x_1 = 15.000012397766113 \land x_2 = 15.000021934509277$
- $softsign(x_1) = 0.93750011920928955$
- $x_2 > x_1$ but $softsign(x_2) < softsign(x_1)!$
- It decreases by ≈ 0.0000012

³MinGW-w64 with options -m64 -02 and MUSL implementation of math.h.