A Tale of Two Oracles: Defining and Verifying when AI Systems are Safe

Edoardo Manino

University of Manchester (UK) This work is funded by the EPSRC grant EP/T026995/1 entitled "EnnCore: End-to-End Conceptual Guarding of Neural Architectures" under *Security for all in an AI enabled society*

The University of Manchester

EnnCore Project: an overview

Overview

- Vision: End-to-End Conceptual Guarding of Neural Architectures
- 4 Packages: Explainability, Symbolic Verification, Software Safety, Case Studies
- Large project: 6 academics, 5 postdocs, 2 academic institutions, 2 industrial partners, £1.7M funding from EPSRC

EnnCore

Outcomes up to January 2023

 30+ publications, 1 workshop at AAAI'22, 1 software tool, 3 awards

EnnCore Project: a personal view

My profile

- Studied computer engineering
- PhD in theoretical ML
- Postdoc in NN verification

EnnCore

This talk is based on:

- Manino et al., Systematicity, Compositionality and Transitivity of Deep NLP Models: a Metamorphic Testing Perspective, Findings of the ACL, 2022
- Batista et al., CEG4N: Counter-Example Guided Neural Network Quantization Refinement, IEEE Transactions on Computer-Aided Design, 2023
- Manino et al., Towards Global Neural Network Abstractions with Locally-Exact Reconstruction, Neural Network Journal, 2023

The Oracle Problem

Testing a Black-Box System Requires

- Many test cases (inputs)
- Their ground-truth (outputs)

"Exhaustive" Testing Would Require

- The presence of an oracle
- That can gives us the ground-truth
- For any possible input

A Safety Paradox

- If such oracle exists, we do not need the black box system!
- This talk: two ML-specific variants of this paradox

Back to the Basics: The Data Scientist's View

ML "Ingredients"

- A (possibly large) dataset of examples
- A ML model and an algorithm to train it

Back to the Basics: Empirical Risk Minimisation

What's The Requirement?

- Minimise the empirical loss $\frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(f(x_i), y_i)$
- That is, mimic the training set in some statistical sense

The Requirements Paradox

No Formal Requirements in ML

- Minimise the loss function
- Perform "well" on test set
- No constraints on OOD behaviour

A ML Safety Paradox (1)

- If we have a full set of requirements we do not need ML at all
- ▶ I.e., just use the oracle

Image robustness

Safety property

- For each input image x with output y
- Any perturbation $x' : ||x' x|| < \epsilon$ still outputs y
- This property is broken in the example above!

NLP Safety Properties

A Few Crucial Differences

- NLP inputs (tokens) are discrete not continuous
- Rich tradition of linguistic analysis, often grounded in logic
- Recent successes suggest the presence of shallow reasoning

Text robustness (1)

Use the adversarial image paradigm with text?

- Discrete input \neq "continuous" image
- What is an imperceptible noise/perturbation for text?
- Literature between 2017-2018 focuses on this

Example: mizpelling vs sentiment analysis

- ▶ Input: The encore was nice \rightarrow Positive Review
- Noise: natural typos, synthetic typos, character shuffle
- Result: Ze EnnCore was niec \rightarrow ????

Safety property

- For each sentence x with output sentiment y
- Any semantic-preserving mutation of x still outputs y

Text robustness (2)

More semantic-preserving mutations

- Semantic noise: replace words with synonyms
- Syntactic noise: parse and reorder a sentence
- Sentence compression: parse a sentence, delete sub-tree
- Positive tautology: add "and true is true" at the end
- Jabberwocky words: replace peripheral words with nonsense
 ...

Example: Jabberwockies and synonyms vs entailment

- ► The French band gave an encore. The musicians played → Entailment
- ► The Messazovian band gave an encore. The ensemble played → ???? [RoBERTa: Entailment]

Other properties

Beyond robustness

- We can define more complex safety properties
- See Ribeiro et al, 2020, Behavioral Testing of NLP Models

Example: semantic monotonicity vs sentiment analysis

- Input: The orchestra was cool, the music not so much
- Adding "and you are lame!" must make it more negative

Example: gender equality vs comprehension

- ► John is not the harpist, Mary is. Who is a harpist? → Answer: Mary
- ► Mary is not the harpist, John is. Who is a harpist? → Answer: ????

Popular Safety Requirements

Research Challenge

- Empirical risk minimisation is not strong enough
- We need to augment it with additional requirements

Popular Safety Properties

- Deterministic: robustness*, monotonicity, equivalence, stability
- Probabilistic: robustness*, fairness
- System-Level: privacy-preserving ML, absence of backdoors

A Property of ML Safety Properties (1)

We only tell the ML system what not to do

WHAT IS MISSING ?

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 の Q @ 14/48

A software security view (1)

ML testing

- Test set accuracy
- Mutations/perturbations
- Wrong predictions
- Adversarial example
- Adversarial training

Software testing

- Unit testing
- Fuzzed input
- Exceptions/crashes
- Vulnerability
- Debugging

A software security view (2)

Trend towards learning from unlabelled data

- Unsupervised, semi-supervised, self-supervised
- No need for costly dataset annotation

Testing without ground-truth?

- Current paradigms need ground-truth annotations
- In-distribution testing: train-validate-test split
- More recent: out-of-distribution testing, probing

Metamorphic testing!

- Formal definition of input-output behaviour
- Checks whether the NLP model satisfies it
- \blacktriangleright Less reliance on ground-truth \implies large number of test cases

A formalisation of robustness properties

Notation (input)

- ► x: The encore was nice
- ► x': Ze EnnCore was niec
- ► T: add input noise

A formalisation of robustness properties

Notation (input)

- ► x: The encore was nice
- ► x': Ze EnnCore was niec
- ► T: add input noise

Notation (ML and output)

- ► f: neural network
- y: positive/negative sentiment
- ► y': positive/negative sentiment

A formalisation of robustness properties

Notation (input)

- x: The encore was nice
- ► x': Ze EnnCore was niec
- T: add input noise

Notation (ML and output)

- ► f: neural network
- y: positive/negative sentiment
- ► y': positive/negative sentiment

Notation (relation)

► P: equivalence

Beyond robustness properties

Example: semantic monotonicity vs sentiment analysis

- ▶ Input: The orchestra was cool, the music not so much
- Adding "and you are lame!" must make it more negative

Beyond robustness properties

Example: semantic monotonicity vs sentiment analysis

- Input: The orchestra was cool, the music not so much
- Adding "and you are lame!" must make it more negative

Example: gender equality vs comprehension

- ► John is not the harpist, Mary is. Who is a harpist? → Answer: Mary
- ► Mary is not the harpist, John is. Who is a harpist? → Answer: John

Beyond robustness properties

Example: semantic monotonicity vs sentiment analysis

- Input: The orchestra was cool, the music not so much
- Adding "and you are lame!" must make it more negative

Example: gender equality vs comprehension

- ► John is not the harpist, Mary is. Who is a harpist? → Answer: Mary
- ► Mary is not the harpist, John is. Who is a harpist? → Answer: John

Reference

 Ribeiro et al, 2020, Behavioral Testing of NLP Models

Robustness-like properties (recap)

Main characteristic

- A user-defined transformation T
- A relation P on the (softmax) output
- It must hold for every input x

Robustness-like properties (recap)

Main characteristic

- A user-defined transformation T
- A relation P on the (softmax) output
- It must hold for every input x

Verification/testing challenge

- Find inputs x that break the relation P
- aka "counterexamples"

Robustness-like properties (recap)

Single-input metamorphic relations									
Input	$\mathbf{x} =$ The cat sat on the mat.								
mput.	$\mathbf{x}' = $ The pet stood onto the mat.								
<i>T</i> :	replace any word of the input with a synonym.								
<i>P</i> :	$\mathbf{y} = f(\mathbf{x}) \land \exists i \ \forall j \neq i \ (y_i > y_j) \land (y'_i > y'_j)$								

Table: Example of robustness relations from the literature [Li 2017]. Robustness relations belong to the class of single-input relations.

Our claim

- We reviewed all existing metamorphic testing for NLP
- They all test the same basic metamorphic relation
- We name it the single-input relation

A new idea

What if we consider **pairs** of inputs?

A new idea

What if we consider **pairs** of inputs?

Example (step 1): hyponymy relation

- ▶ Input *x*₁: "a tree is a type of plant"
- ▶ Input x₂: "a car is a type of vehicle"

A new idea

What if we consider pairs of inputs?

Example (step 1): hyponymy relation

- Input x₁: "a tree is a type of plant"
- Input x₂: "a car is a type of vehicle"

Example (step 2): context change $\ell(\cdot)$

- Input x'₁: "we know that tree is a subset of plant"
- Input x'₂: "we know that car is a subset of vehicle"

A new idea

What if we consider pairs of inputs?

Example (step 1): hyponymy relation

- Input x₁: "a tree is a type of plant"
- Input x₂: "a car is a type of vehicle"

Example (step 2): context change $\ell(\cdot)$

- Input x'₁: "we know that tree is a subset of plant"
- Input x': "we know that car is a subset of vehicle"

Example (step 3): safety property

- Pick a neural net $f(\cdot)$ that predicts the truth of a statement
- If x₁ happens to be "truer" than x₂
- Then we want x'_1 to be "truer" than x'_2 as well

A formalisation of the new NLP properties

Notation

- T: "a <q> is a type of <r>" becomes "We know that <q> is a subset of <r>"
- P: if $y_1 \ge y_2$ then $y'_1 \ge y'_2$, where \ge means "truer"
- $\blacktriangleright P \text{ is an implication } P_{src} \implies P_{fwl}$

Pairwise systematicity: a geometric view

What happens in the embedding space?

- Pairwise systematicity impose implicit constraints!
- The relation on the left needs to match the one on the right

Pairwise systematicity (recap)

Intuition

- Pick two unrelated source inputs x₁, x₂
- Read the relation between their outputs y₁, y₂
- Check whether the relation holds after transformation T

Pairwise systematicity: experiment 1

Insertion	Label	Context C	Context D				
(pumpkin,	leq	We know that pumpkin be-	Pumpkin is a				
vegetable)		longs to the set of veg-	type of vegetable				
		etable					
(animal,	none	We know that animal be-	Animal is a type				
shoe)		longs to the set of shoe	of shoe				
(building,	geq	We know that building be-	Building is a type				
house)		longs to the set of house	of house				

Table: Examples of insertion pairs with hyponymy (leq), hypernymy (geq) and no relation (none), and two contexts C and D.

Binary Target	geq	none	leq	rand
Training Accuracy	0.931	1.000	0.990	0.591
Satisfied Properties	0.881	0.867	0.861	0.639

Table: Ratio of consistent relationships across different contexts vs training accuracy. These were computed out of 1M random pairs.

Pairwise systematicity: experiment 2

Pairwise systematicity metamorphic relations											
	${\boldsymbol{x}}_1 =$	Light, cute a	ight, cute and forgettable.								
Input:	$\mathbf{x}_2 =$	A masterpie	masterpiece four years in the making.								
	$\mathbf{x}_1' =$	Thank you.	Light, cute and	d forgettable.							
	$\mathbf{x}_{2}^{\prime} =$	Thank you.	A masterpiece	four years in	the making.						
<i>T</i> :	conca	tenate the te	ext Thank you.	at the begin	ning of the input.						
<i>P</i> :	Spo	$os(f(\mathbf{x}_1)) > s$	$pos(f(\mathbf{x}_2)) \iff$	$s_{pos}(f(\mathbf{x}_1'))$	$> s_{pos}(f(\mathbf{x}_{2}'))$						

Table: Example of pairwise systematicity relations for sentiment analysis.

Empirical results

- State-of-the-art RoBERTa model for sentiment analysis
- ▶ 112M+ relations from a dataset with 11K+ unlabelled entries!
- ▶ From 5% to 10% violations depending on T

Contribution: three-way transitivity

Intuition

- Pick three unrelated source inputs x₁, x₂, x₃
- Create all possible pairs $\mathbf{x}_{ij} = (\mathbf{x}_i, \mathbf{x}_j)$
- Check whether $v(y_{12}) \wedge v(y_{23}) \Rightarrow v(y_{13})$, with boolean v

Contribution: three-way transitivity

Three-way transitivity metamorphic relations

Table: Example of three-way transitivity relations for the lexical relations of synonymy and hypernymy.

Empirical results

- State-of-the-art RoBERTa model for lexical relations
- Cubic number of relations, we pick a sample of them
- ► From 60% to 80% violations depending on the input language

Summary and future work

Contributions

- Taxonomy of existing work (single-input relations)
- Novel graphical notation for metamorphic relations
- Pairwise systematicity metamorphic relation
- Pairwise compositionality metamorphic relation
- Three-way transitivity metamorphic relation

Practical impact

- Metamorphic testing can work with unlabelled test sets
- Our relations generate a quadratic/cubic number of test cases

Future work

 Montague Semantics and Modifier Consistency Measurement in Neural Language Models, submitted to EACL'23

Back to the Basics: Universal Approximation

Why do neural networks perform well?

- In most cases, they are universal approximators
- That is, there exists a set of parameters (weights, biases)
- Such that the network is able to fit arbitrary training data

イロト イヨト イヨト

Back to the Basics: Gradient Descent

There is a catch though...

- There exist an optimal set of parameters (weights, biases)
- But gradient descent might never find it!

The Equivalence Paradox

NNs have High Redundancy

- In order to train well
- We use (very) large nets
- To maximize capacity

Compression techniques

- After training we want to reduce the network size
- E.g., pruning, quantisation, distillation

A ML Safety Paradox (2)

- ▶ Inference with the original NN (the oracle!) is expensive
- The compressed network may introduce unwanted behaviour

Neural Network Quantization (1)

Why quantization?

- Old technique from signal processing/information theory
- Reduce memory footprint (e.g., store 8-bit weights)
- Reduce latency/power (full integer computation)

Neural Network Quantization (2)

- Many Strategies
 - Dynamic
 - Post-Training
 - Q-Aware Training
 - Non-Uniform

Main differences

. . .

- Whether the weights and/or the activations are quantized
- Whether the weights are fine-tuned after quantization
- Whether the quantization is uniform (e.g., int 8-bit)

Quantisation and NN Equivalence

			Number of bits												
Safety Prop.		6	7	8	9	10	11	12	13		28	29	30	31	32
Set.	R ₄₀	S	S	F	S	S	S	S	S		S	S	S	S	S
	R ₅₀	S	S	F	F	F	F	F	F		F	F	F	F	S
Vers.	R ₂₀	S	F	S	S	S	S	S	S		S	S	S	S	S
	R ₃₀	S	F	S	S	S	S	S	S		S	S	S	S	S
	R ₄₀	S	F	S	F	F	F	S	S		S	S	S	S	S
	R ₅₀	S	F	F	F	F	F	F	F		F	F	F	F	F
Virg.	R ₂₀	S	F	S	S	S	S	S	S		S	S	S	S	S
	R ₃₀	S	F	S	S	S	S	S	S		S	S	S	S	S
	R ₄₀	S	F	S	S	F	S	S	S		S	S	S	S	S
	R ₅₀	S	F	F	F	F	F	F	F		F	F	F	F	F

Table: Effects of quantization on the safety of a NN trained on Iris data.

Effects of Quantisation

- Even if the accuracy does not drop, the behaviour may change
- Can we deploy safe quantized network?

CEG4N: Counterexample-Guided NN Quantisation

 in Batista et al., TCAD 2023

Quantisation

- Genetic algorithm
- Minimise bits
- Test equivalence

Verification

- Verify equivalence
- If not, generate counterexample
- Augment testset
- Repeat

CEG4N: Lessons Learned

Equivalence

- Different definitions
- Same output class or error bound?
- No correlation with accuracy and robustness

Scalability

- Verification is slow
- But only few iterations are needed

Pruning (1)

Why Pruning?

- Neural networks are highly redundant
- Remove whole neurons and connections
- Original goal: reduce latency/power

Pruning (2)

Pruning for verification

- Neural network verification does not scale well
- Can we use pruning to reduce the size of the problem?
- Only if the smaller model is an *abstraction* of the original one

$Pruning \equiv Global NN Abstraction$

Our "Pruning" Plan

- Make network smaller
- Verify smaller model
- "Transfer" result to original model

Global neural network abstractions

- Our plan works if "pruning" keeps certified error bounds
- Key trick: merge similar neurons, keep max/min weights
- Literature: Prabhakar (NeurIPS 2019), Elboher (CAV 2020)
- Problem: error bounds are huge

Towards Global Abstractions with Local Reconstruction

Our GINNACER Algorithm

- Do not merge if the activation state changes at the centroid
- The upper and lower bounds are ReLU NNs themselves!
- in Manino et al., Neural Network Journal, 2023

GINNACER: Lessons Learned

Tightness

- Beats existing global abstractions
- Competitive with local ones
- Is it enough?

Future

- Simple rules like pruning and merging are limited
- Required to reason about multiple layers
- Subtle trade-off between abstraction and solving

Other NN Transformations

Private Inference

- Run neural networks
- On encrypted data!
- Uses poly activations
- Equivalence problem

in Manino et al., FoMLAS 2023 (CAV workshop)

Convert neural networks to C code

- Microcontrollers benefit from standalone, compilable code
- Requires off-the-shelf software verification
- But it is not as easy as it sounds...
- in Manino et al., AFRiTS 2023 (SBMF workshop)

Summary

Requirements Paradox

- Formalise expectations of NLP system users
- Contribution: metamorphic definition of linguistic properties

Equivalence Paradox

- Compressed NN may exhibit unwanted behaviour
- Contribution (1): safe design of quantized NNs
- Contribution (2): global NN abstraction (formal "pruning")
- Contribution (3): other transformations

My Collaborators

João Batista, Iury Bessa, Danilo Carvalho, Lucas C. Cordeiro, Eddie de Lima Filho, André Freitas, Bernardo Magri, Rafael Sá Menezes, Mustafa Mustafa, Julia Rozanova, Fedor Shmarov, Xidan Song