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EnnCore Project: an overview

Overview
▶ Vision: End-to-End Conceptual

Guarding of Neural Architectures

▶ 4 Packages: Explainability,
Symbolic Verification, Software
Safety, Case Studies

▶ Large project: 6 academics, 5
postdocs, 2 academic institutions,
2 industrial partners, £1.7M
funding from EPSRC

Outcomes up to January 2023

▶ 30+ publications, 1 workshop at AAAI’22, 1 software tool, 3
awards
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EnnCore Project: a personal view

My profile

▶ Studied computer engineering

▶ PhD in theoretical ML

▶ Postdoc in NN verification

This talk is based on:
▶ Manino et al., Systematicity, Compositionality and Transitivity

of Deep NLP Models: a Metamorphic Testing Perspective,
Findings of the ACL, 2022

▶ Batista et al., CEG4N: Counter-Example Guided Neural
Network Quantization Refinement, IEEE Transactions on
Computer-Aided Design, 2023

▶ Manino et al., Towards Global Neural Network Abstractions
with Locally-Exact Reconstruction, Neural Network Journal,
2023
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The Oracle Problem

Testing a Black-Box System Requires

▶ Many test cases (inputs)

▶ Their ground-truth (outputs)

“Exhaustive” Testing Would Require

▶ The presence of an oracle

▶ That can gives us the ground-truth

▶ For any possible input

A Safety Paradox

▶ If such oracle exists, we do not need the black box system!

▶ This talk: two ML-specific variants of this paradox
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Back to the Basics: The Data Scientist’s View

ML “Ingredients”

▶ A (possibly large) dataset of examples

▶ A ML model and an algorithm to train it
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Back to the Basics: Empirical Risk Minimisation

What’s The Requirement?

▶ Minimise the empirical loss 1
N

∑N
i=1 L(f (xi ), yi )

▶ That is, mimic the training set in some statistical sense
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The Requirements Paradox

No Formal Requirements in ML

▶ Minimise the loss function

▶ Perform “well” on test set

▶ No constraints on OOD behaviour

A ML Safety Paradox (1)

▶ If we have a full set of requirements we do not need ML at all

▶ I.e., just use the oracle
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Image robustness

Safety property

▶ For each input image x with output y

▶ Any perturbation x ′ : ||x ′ − x || < ϵ still outputs y

▶ This property is broken in the example above!

8 / 48



NLP Safety Properties

A Few Crucial Differences
▶ NLP inputs (tokens) are discrete not continuous

▶ Rich tradition of linguistic analysis, often grounded in logic

▶ Recent successes suggest the presence of shallow reasoning
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Text robustness (1)

Use the adversarial image paradigm with text?

▶ Discrete input ̸= “continuous” image

▶ What is an imperceptible noise/perturbation for text?

▶ Literature between 2017-2018 focuses on this

Example: mizpelling vs sentiment analysis

▶ Input: The encore was nice → Positive Review

▶ Noise: natural typos, synthetic typos, character shuffle

▶ Result: Ze EnnCore was niec → ????

Safety property

▶ For each sentence x with output sentiment y

▶ Any semantic-preserving mutation of x still outputs y
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Text robustness (2)

More semantic-preserving mutations

▶ Semantic noise: replace words with synonyms

▶ Syntactic noise: parse and reorder a sentence

▶ Sentence compression: parse a sentence, delete sub-tree

▶ Positive tautology: add “and true is true” at the end

▶ Jabberwocky words: replace peripheral words with nonsense

▶ . . .

Example: Jabberwockies and synonyms vs entailment

▶ The French band gave an encore. The musicians played
→ Entailment

▶ The Messazovian band gave an encore. The ensemble played
→ ???? [RoBERTa: Entailment]
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Other properties

Beyond robustness

▶ We can define more complex safety properties

▶ See Ribeiro et al, 2020, Behavioral Testing of NLP Models

Example: semantic monotonicity vs sentiment analysis

▶ Input: The orchestra was cool, the music not so much

▶ Adding “and you are lame!” must make it more negative

Example: gender equality vs comprehension

▶ John is not the harpist, Mary is. Who is a harpist?
→ Answer: Mary

▶ Mary is not the harpist, John is. Who is a harpist?
→ Answer: ????
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Popular Safety Requirements

Research Challenge

▶ Empirical risk minimisation is not strong enough

▶ We need to augment it with additional requirements

Popular Safety Properties

▶ Deterministic: robustness*, monotonicity, equivalence,
stability

▶ Probabilistic: robustness*, fairness

▶ System-Level: privacy-preserving ML, absence of backdoors

A Property of ML Safety Properties (1)

▶ We only tell the ML system what not to do
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A software security view (1)

ML testing

▶ Test set accuracy

▶ Mutations/perturbations

▶ Wrong predictions

▶ Adversarial example

▶ Adversarial training

Software testing

▶ Unit testing

▶ Fuzzed input

▶ Exceptions/crashes

▶ Vulnerability

▶ Debugging
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A software security view (2)

Trend towards learning from unlabelled data

▶ Unsupervised, semi-supervised, self-supervised

▶ No need for costly dataset annotation

Testing without ground-truth?

▶ Current paradigms need ground-truth annotations

▶ In-distribution testing: train-validate-test split

▶ More recent: out-of-distribution testing, probing

Metamorphic testing!

▶ Formal definition of input-output behaviour

▶ Checks whether the NLP model satisfies it

▶ Less reliance on ground-truth =⇒ large number of test cases
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A formalisation of robustness properties

Notation (input)

▶ x : The encore was nice

▶ x ′: Ze EnnCore was niec

▶ T : add input noise

Notation (ML and output)

▶ f : neural network

▶ y : positive/negative sentiment

▶ y ′: positive/negative sentiment

Notation (relation)

▶ P: equivalence

x

x′

y

y′

f

f

T P
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Beyond robustness properties

Example: semantic monotonicity vs sentiment analysis

▶ Input: The orchestra was cool, the music not so much

▶ Adding “and you are lame!” must make it more negative

Example: gender equality vs comprehension

▶ John is not the harpist, Mary is. Who is a harpist?
→ Answer: Mary

▶ Mary is not the harpist, John is. Who is a harpist?
→ Answer: John

Reference
▶ Ribeiro et al, 2020, Behavioral

Testing of NLP Models
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Robustness-like properties (recap)

Main characteristic
▶ A user-defined transformation T

▶ A relation P on the (softmax)
output

▶ It must hold for every input x

Verification/testing challenge

▶ Find inputs x that break the
relation P

▶ aka “counterexamples”

x

x′

y

y′

f

f

T P
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Robustness-like properties (recap)

Single-input metamorphic relations

Input:
x = The cat sat on the mat.

x′ = The pet stood onto the mat.

T : replace any word of the input with a synonym.
P: y = f (x) ∧ ∃i ∀j ̸= i (yi > yj) ∧ (y ′i > y ′j )

Table: Example of robustness relations from the literature [Li 2017].
Robustness relations belong to the class of single-input relations.

Our claim
▶ We reviewed all existing metamorphic testing for NLP

▶ They all test the same basic metamorphic relation

▶ We name it the single-input relation
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More NLP safety properties?

A new idea
▶ What if we consider pairs of inputs?

Example (step 1): hyponymy relation

▶ Input x1: “a tree is a type of plant”

▶ Input x2: “a car is a type of vehicle”

Example (step 2): context change ℓ(·)
▶ Input x ′1: “we know that tree is a subset of plant”

▶ Input x ′2: “we know that car is a subset of vehicle”

Example (step 3): safety property

▶ Pick a neural net f (·) that predicts the truth of a statement

▶ If x1 happens to be “truer” than x2
▶ Then we want x ′1 to be “truer” than x ′2 as well
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A formalisation of the new NLP properties

x1

x′1

y1

y′1

y2

y′2

x2

x′2

P

f

f

f

f

T T

Notation
▶ T : “a <q> is a type of <r>” becomes “We know that <q>

is a subset of <r>”

▶ P: if y1 ≥ y2 then y ′1 ≥ y ′2, where ≥ means “truer”

▶ P is an implication Psrc =⇒ Pfwl

23 / 48



Pairwise systematicity: a geometric view

output
score s

Psrc(y1,y2)y1

y2

output
score s

Pfwl(y
′
1,y

′
2)

y′
1 y′

2

What happens in the embedding space?

▶ Pairwise systematicity impose implicit constraints!

▶ The relation on the left needs to match the one on the right
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Pairwise systematicity (recap)

x1

x′1

y1

y′1

y2

y′2

x2

x′2

P

f

f

f

f

T T

Intuition
▶ Pick two unrelated source inputs x1, x2
▶ Read the relation between their outputs y1, y2
▶ Check whether the relation holds after transformation T
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Pairwise systematicity: experiment 1

Insertion Label Context C Context D

(pumpkin,
vegetable)

leq We know that pumpkin be-
longs to the set of veg-
etable

Pumpkin is a
type of vegetable

(animal,
shoe)

none We know that animal be-
longs to the set of shoe

Animal is a type
of shoe

(building,
house)

geq We know that building be-
longs to the set of house

Building is a type
of house

Table: Examples of insertion pairs with hyponymy (leq), hypernymy (geq)
and no relation (none), and two contexts C and D .

Binary Target geq none leq rand

Training Accuracy 0.931 1.000 0.990 0.591

Satisfied Properties 0.881 0.867 0.861 0.639

Table: Ratio of consistent relationships across different contexts vs
training accuracy. These were computed out of 1M random pairs.
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Pairwise systematicity: experiment 2

Pairwise systematicity metamorphic relations

Input:

x1 = Light, cute and forgettable.

x2 = A masterpiece four years in the making.

x′1 = Thank you. Light, cute and forgettable.

x′2 = Thank you. A masterpiece four years in the making.

T : concatenate the text Thank you. at the beginning of the input.

P: spos
(
f (x1)

)
> spos

(
f (x2)

)
⇐⇒ spos

(
f (x′1)

)
> spos

(
f (x′2)

)
Table: Example of pairwise systematicity relations for sentiment analysis.

Empirical results

▶ State-of-the-art RoBERTa model for sentiment analysis

▶ 112M+ relations from a dataset with 11K+ unlabelled entries!

▶ From 5% to 10% violations depending on T
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Contribution: three-way transitivity

x1

x2

x3

x12

x13

x23

y12

y13

y23

T

T

T

f

f

f

P

Intuition
▶ Pick three unrelated source inputs x1, x2, x3
▶ Create all possible pairs xij = (xi , xj)

▶ Check whether v(y12) ∧ v(y23) ⇒ v(y13), with boolean v
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Contribution: three-way transitivity
Three-way transitivity metamorphic relations

Input:

x1, x2, x3 = arrangement symmetrical together

x12 = ( arrangement symmetrical )

x23 = ( symmetrical together )

x13 = ( arrangement together )

T : choose two words from the source triplet x1, x2, x3
Psyn: vsyn

(
f (x12)

)
∧ vsyn

(
f (x23)

)
=⇒ vsyn

(
f (x13)

)
Phyp: vhyp

(
f (x12)

)
∧ vhyp

(
f (x23)

)
=⇒ vhyp

(
f (x13)

)
Table: Example of three-way transitivity relations for the lexical relations
of synonymy and hypernymy.

Empirical results

▶ State-of-the-art RoBERTa model for lexical relations

▶ Cubic number of relations, we pick a sample of them

▶ From 60% to 80% violations depending on the input language
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Summary and future work

Contributions
▶ Taxonomy of existing work (single-input relations)

▶ Novel graphical notation for metamorphic relations

▶ Pairwise systematicity metamorphic relation

▶ Pairwise compositionality metamorphic relation

▶ Three-way transitivity metamorphic relation

Practical impact

▶ Metamorphic testing can work with unlabelled test sets

▶ Our relations generate a quadratic/cubic number of test cases

Future work
▶ Montague Semantics and Modifier Consistency Measurement

in Neural Language Models, submitted to EACL’23
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Back to the Basics: Universal Approximation

Why do neural networks perform well?

▶ In most cases, they are universal approximators

▶ That is, there exists a set of parameters (weights, biases)

▶ Such that the network is able to fit arbitrary training data
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Back to the Basics: Gradient Descent

There is a catch though. . .

▶ There exist an optimal set of parameters (weights, biases)

▶ But gradient descent might never find it!
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The Equivalence Paradox

NNs have High Redundancy

▶ In order to train well

▶ We use (very) large nets

▶ To maximize capacity

Compression techniques

▶ After training we want to reduce the network size

▶ E.g., pruning, quantisation, distillation

A ML Safety Paradox (2)

▶ Inference with the original NN (the oracle!) is expensive

▶ The compressed network may introduce unwanted behaviour
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Neural Network Quantization (1)

Why quantization?

▶ Old technique from signal processing/information theory

▶ Reduce memory footprint (e.g., store 8-bit weights)

▶ Reduce latency/power (full integer computation)
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Neural Network Quantization (2)

Many Strategies

▶ Dynamic

▶ Post-Training

▶ Q-Aware Training

▶ Non-Uniform

▶ . . .

Main differences
▶ Whether the weights and/or the activations are quantized

▶ Whether the weights are fine-tuned after quantization

▶ Whether the quantization is uniform (e.g., int 8-bit)
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Quantisation and NN Equivalence

Number of bits

Safety Prop. 6 7 8 9 10 11 12 13 28 29 30 31 32

Set.
R40 S S F S S S S S . . . S S S S S
R50 S S F F F F F F . . . F F F F S

Vers.

R20 S F S S S S S S . . . S S S S S
R30 S F S S S S S S . . . S S S S S
R40 S F S F F F S S . . . S S S S S
R50 S F F F F F F F . . . F F F F F

Virg.

R20 S F S S S S S S . . . S S S S S
R30 S F S S S S S S . . . S S S S S
R40 S F S S F S S S . . . S S S S S
R50 S F F F F F F F . . . F F F F F

Table: Effects of quantization on the safety of a NN trained on Iris data.

Effects of Quantisation

▶ Even if the accuracy does not drop, the behaviour may change

▶ Can we deploy safe quantized network?
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CEG4N: Counterexample-Guided NN Quantisation

▶ in Batista et al.,
TCAD 2023

Quantisation

▶ Genetic algorithm

▶ Minimise bits

▶ Test equivalence

Verification
▶ Verify equivalence

▶ If not, generate
counterexample

▶ Augment testset

▶ Repeat

Start

Bits Search Module

Abstractions Module

Verifier Module

Success Failure

• A neural network f ;

• A set of counterexamples

• A set of properties;

• Search Module parameters;

• Verifier Module parameters;

Bits sequence N is found.

Property Ψ does not
hold. Counterexample
xCE is added to the

counterexamples set HCE

Property Ψ holds

Timeout,
Out of

memory, etc.

Unable to
find bits

sequence N .
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CEG4N: Lessons Learned

Equivalence

▶ Different definitions

▶ Same output class or
error bound?

▶ No correlation with
accuracy and
robustness

Scalability

▶ Verification is slow

▶ But only few
iterations are needed

Start

Bits Search Module

Abstractions Module

Verifier Module

Success Failure

• A neural network f ;

• A set of counterexamples

• A set of properties;

• Search Module parameters;

• Verifier Module parameters;

Bits sequence N is found.

Property Ψ does not
hold. Counterexample
xCE is added to the

counterexamples set HCE

Property Ψ holds

Timeout,
Out of

memory, etc.

Unable to
find bits

sequence N .
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Pruning (1)

Why Pruning?

▶ Neural networks are highly redundant

▶ Remove whole neurons and connections

▶ Original goal: reduce latency/power
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Pruning (2)

Pruning for verification

▶ Neural network verification does not scale well

▶ Can we use pruning to reduce the size of the problem?

▶ Only if the smaller model is an abstraction of the original one
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Pruning ≡ Global NN Abstraction

Our ”Pruning” Plan

▶ Make network smaller

▶ Verify smaller model

▶ ”Transfer” result to
original model

Global neural network abstractions
▶ Our plan works if ”pruning” keeps certified error bounds

▶ Key trick: merge similar neurons, keep max/min weights

▶ Literature: Prabhakar (NeurIPS 2019), Elboher (CAV 2020)

▶ Problem: error bounds are huge
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Towards Global Abstractions with Local Reconstruction

−2 −1 0 1 2 3 4 5 6
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Our GINNACER Algorithm

▶ Do not merge if the activation state changes at the centroid

▶ The upper and lower bounds are ReLU NNs themselves!

▶ in Manino et al., Neural Network Journal, 2023
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GINNACER: Lessons Learned

Tightness

▶ Beats existing
global abstractions

▶ Competitive with
local ones

▶ Is it enough?
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Future
▶ Simple rules like pruning and merging are limited

▶ Required to reason about multiple layers

▶ Subtle trade-off between abstraction and solving
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Other NN Transformations

Private Inference
▶ Run neural networks

▶ On encrypted data!

▶ Uses poly activations

▶ Equivalence problem
xmin 0 xmax

0

xmax ReLU(x)

Poly5(x)

▶ in Manino et al., FoMLAS 2023 (CAV workshop)

Convert neural networks to C code
▶ Microcontrollers benefit from standalone, compilable code

▶ Requires off-the-shelf software verification

▶ But it is not as easy as it sounds. . .

▶ in Manino et al., AFRiTS 2023 (SBMF workshop)
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Summary

Requirements Paradox

▶ Formalise expectations of NLP system users

▶ Contribution: metamorphic definition of linguistic properties

Equivalence Paradox

▶ Compressed NN may exhibit unwanted behaviour

▶ Contribution (1): safe design of quantized NNs

▶ Contribution (2): global NN abstraction (formal ”pruning”)

▶ Contribution (3): other transformations

My Collaborators

▶ João Batista, Iury Bessa, Danilo Carvalho, Lucas C. Cordeiro,
Eddie de Lima Filho, André Freitas, Bernardo Magri, Rafael
Sá Menezes, Mustafa Mustafa, Julia Rozanova, Fedor
Shmarov, Xidan Song
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